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Abstract We study the asymptotic scaling of the entanglement of a block of spins for the
ground state of the one-dimensional quantum Ising model with transverse field. When the
field is sufficiently strong, the entanglement grows at most logarithmically in the number
of spins. The proof utilises a transformation to a model of classical probability called the
continuum random-cluster model, and is based on a property of the latter model termed
ratio weak-mixing. In an intermediate result, we establish an exponentially decaying bound
on the operator norm of differences of the reduced density operator. Of special interest is the
mathematical rigour of this work, and the fact that the proof applies equally to a large class
of disordered interactions.

Keywords Quantum Ising model · Entanglement · Random-cluster model

1 The Quantum Ising Model

The quantum Ising model in a transverse magnetic field is one of the most famous examples
of exactly solvable one-dimensional quantum models. The solution was first given by Pfeuty
in [26], based on earlier works by Lieb, Schultz, and Mattis [18] and by McCoy [21]. The
diagonalisation of the Hamiltonian and the determination of the energy eigenstates is based
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on methods developed by Jordan and Wigner [16] in the theory of second quantisation of
fermion fields, and by Bogoliubov [7] in the theory of superconductivity. This model exhibits
a second-order phase transition in the ground state when the temperature of the system is
zero. The existence of the phase transition and the computation of the spin–spin correlation
functions were studied in [26]; rigorous results for the correlation functions in the presence
of disorder are provided in [1, 9].

Quantum systems, unlike classical systems, can support composite pure states for which
it is impossible to assign a definite state to two or more subsystems. States with this prop-
erty are known as entangled states and have attracted a great deal of interest recently due to
their resource-like properties. The investigation of the entanglement properties of strongly
interacting quantum spin systems, with a view toward quantum phase transitions, was ini-
tiated by Osterloh et al. [25] and by Osborne and Nielsen [24] (see, for example, [4] and
the references therein for further studies). It is now understood that the strength of quan-
tum entanglement is related to the number of parameters required to describe a quantum
state classically. Thus, for 1D systems, the scaling of the geometric entropy—the degree of
entanglement of a distinguished subsystem with respect to the rest—has emerged as the cru-
cial parameter which quantifies whether the state is hard or easy to simulate [30]. It has been
conjectured that the entropy of entanglement obeys an area law, scaling as the boundary area
in the subcritical phase, with a possible logarithmic correction for the critical phase. There
is a paucity of rigorous results concerning the scaling of the entanglement of a block for the
quantum Ising model; the above results are typically obtained by numerical calculations, or
conformal field theory methods [4]. There are some rigorous derivations of the scaling of
the entropy function for certain 1D spin models (specialised essentially to the XY model),
see [4] for further references.

In this paper, we utilise a new method for studying the entanglement properties of the
quantum Ising model. This is based on a representation formulated by Aizenman, Klein,
and Newman [1] of the model in terms of a continuum random-cluster model on a certain
space–time graph. (See also the earlier paper [9].) Using a technique termed ratio weak-
mixing, developed by Alexander [2, 3] for random-cluster and Potts models on discrete
lattices, we prove a bound on the entanglement entropy in the subcritical regime, when the
magnetic field intensity is strong compared to the spin coupling.

The quantum Ising model is defined as follows. Let L ≥ 0. For m ≥ 0, let �m =
{−m,−m + 1, . . . ,m + L} be a subset of the one-dimensional lattice Z, and attach to each
vertex x ∈ �m a quantum spin- 1

2 with local Hilbert space C
2. The Hilbert space H for the

system is H = ⊗m+L

x=−m C
2. A convenient basis for each spin is provided by the two eigen-

states |+〉 = (1
0

)
, |−〉 = (0

1

)
, of the Pauli operator

σ (3)
x =

(
1 0
0 −1

)

,

at the site x, corresponding to the eigenvalues ±1. The other two Pauli operators with respect
to this basis are represented by the matrices

σ (1)
x =

(
0 1
1 0

)

, σ (2)
x =

(
0 −i

i 0

)

. (1.1)

A complete basis for H is given by the tensor products (over x) of the eigenstates of σ (3)
x .

In the following, |φ〉 denotes a vector and 〈φ| its adjoint. As a notational convenience in
this paper, we shall represent sub-intervals of Z as real intervals, writing for example �m =
[−m,m + L].
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The spins in �m interact via the quantum Ising Hamiltonian

Hm = −1

2

∑

〈x,y〉
λx,yσ

(3)
x σ (3)

y −
∑

x

δxσ
(1)
x , (1.2)

generating the operator e−βHm where β denotes inverse temperature. Here, λx,y ≥ 0 and
δx ≥ 0 are the spin-coupling and external-field intensities, respectively, and

∑
〈x,y〉 denotes

a sum over all (distinct) unordered pairs of spins. We concentrate here on the case of in-
teractions between neighbouring spins: λx,y = 0 for |x − y| ≥ 2. While we shall phrase our
results for the translation-invariant case λx,x+1 = λ and δx = δ, our approach can be extended
to random couplings satisfying the condition

P(λx,y < λ) = P(δx > δ) = 1, (1.3)

with θ ≡ λ/δ a sufficiently small constant (see Sect. 8). The ensuing Hamiltonian has a
unique pure ground state |ψm〉 defined at T = 0 (β → ∞) as the eigenvector correspond-
ing to the lowest eigenvalue of Hm. In the translation-invariant case the ground state |ψm〉
depends only on the ratio θ .

For definiteness, we shall work here with a free boundary condition on �m, but we note
that the same methods are valid with a periodic (or wired) boundary condition, in which �m

is embedded on a circle. One difference worthy of note is that the correlation functions of
the critical model are expected to depend on the choice of boundary conditions, see [26].

We write ρm(β) = e−βHm/ tr(e−βHm), and

ρm = lim
β→∞ρm(β) = |ψm〉〈ψm|

for the density operator corresponding to the ground state of the system. The existence of
the limit follows by random-cluster methods, see [1], and we return to this in Sect. 3. The
ground-state entanglement of |ψm〉 is quantified by partitioning the spin chain �m into two
disjoint sets [0,L] and �m \ [0,L] and by considering the entropy of the reduced density
operator

ρL
m = tr�m\[0,L](|ψm〉〈ψm|). (1.4)

One may similarly define, for finite β , the reduced operator ρL
m(β). In both cases, the trace

is performed over the Hilbert space (
⊗−1

x=−m C
2) ⊗ (

⊗m+L

x=L+1 C
2) of the spins belonging to

�m \ [0,L]. Note that ρL
m is a positive semi-definite operator on the Hilbert space HL of

dimension d = 2L+1 of spins indexed by the interval [0,L]. By the spectral theorem for
normal matrices [6], this operator may be diagonalised and has real, non-negative eigen-
values, which we denote λ

↓
j (ρL

m). The arrow indicates that the eigenvalues are arranged in
decreasing order.

Definition 1.5 The entanglement of the interval [0,L] relative to its complement �m \[0,L]
is given by

S(ρL
m) = −tr(ρL

m log2 ρL
m). (1.6)

This quantity may be expressed thus in terms of the eigenvalues of ρL
m:

S(ρL
m) = −

2L+1
∑

j=1

λ
↓
j (ρL

m) log2 λ
↓
j (ρL

m), (1.7)
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where 0 log2 0 is interpreted as 0.
In Sect. 2, we prove our main theorem: the order of the entanglement scaling is at most

log2 L for the ground state in the subcritical regime. This result follows as a corollary of the
main estimate, given by Theorem 6.5, in Sect. 6. In Sects. 3–4, we describe the mapping of
the density operator of the quantum Ising model to a stochastic integral in terms of a Poisson
measure (as in [1]). The mapping begins by considering states with β < ∞ and deriving the
ground state in the limit β → ∞. This allows us to express the matrix elements of the ground
state in terms of a continuous percolation model on a two-dimensional space–time graph,
with one continuous axis describing time. In this setting, the elements of the reduced state
are related to a random-cluster model on the same graph, but with the addition of a ‘slit’
along the interval [0,L] at time 0. The continuum random-cluster model is presented in
detail in Sect. 5. Section 6 contains the main result, which allows us to establish the scaling
of the entanglement entropy, while in Sect. 7 we explain the technique of ratio weak-mixing
on which the proof is based. The extension of our results to disordered systems is discussed
in Sect. 8.

Conformal field theory and renormalization-based methods frequently encounter serious
difficulties in the disordered setting, when the λx,y and δx of the Hamiltonian (1.2) are ran-
dom variables. Indeed, there is some evidence of potential subtlety in the disordered case;
see [27, 28]. In contrast, the methods used here are rigorous and are robust in the disordered
situation. For simplicity we shall prove our theorems in the homogenous case, and then
indicate in Sect. 8 the extra steps necessary when there is disorder.

2 Entropy of the Reduced State

In this section, we study the behaviour of the entropy of the reduced state ρL
m in the subcriti-

cal regime (with θ = λ/δ small). In order to derive an adequate upper bound on the entropy,
we shall analyze the influence on the spectrum of the reduced density operator produced by
imposing a change in the boundary conditions of the spin chain. Specifically, we consider
the distance between the largest eigenvalues of two states defined on [0,L] with respect to
two different lattices, �m, �n, with m ≤ n. The entropy will be estimated by studying the
operator norm

‖ρL
m − ρL

n ‖ ≡ sup
‖ψ‖=1

∣
∣〈ψ |ρL

m − ρL
n |ψ〉∣∣, (2.1)

where the supremum is taken over all vectors |ψ〉 ∈ HL with unit L2-norm belonging to
the Hilbert space HL of spins in [0,L]. We shall see in Sect. 4 that ‖ρL

m − ρL
n ‖ may be

expressed in terms of a certain random-cluster representation of the quantum Ising model.
In Sects. 6 and 7 we shall use a coupling of random-cluster measures and the method of
‘ratio weak-mixing’ to prove the following.

Theorem 2.2 Let λ, δ ∈ (0,∞) and write θ = λ/δ. There exist constants α,C ∈ (0,∞)

depending on θ only, and a constant γ = γ (θ) satisfying 0 < γ < ∞ if θ < 1, such that, for
all L ≥ 1,

‖ρL
m − ρL

n ‖ ≤ min{2,CLαe−γm}, 2 ≤ m ≤ n. (2.3)

Furthermore, we may find such γ satisfying γ → ∞ as θ ↓ 0.

The exponential bound of (2.3) arises through the exponential decay of the two-point
connectivity function of the corresponding subcritical random-cluster model. It is believed
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but not yet proved that the last holds whenever θ < 2. Once this has been proved, (2.3) will
follow for θ < 2.

Proof That ‖ρL
m − ρL

n ‖ ≤ 2 is a consequence of the fact that the ρL
m are density operators.

An upper bound of the form C ′Lαe−γm holds by Theorem 6.5 and the preceding discussion
whenever m ≥ M for suitable M = M(θ). Inequality (2.3) follows on replacing C ′ by C =
eγM max{C ′,2}. �

We shall apply (2.3) iteratively in order to obtain an upper bound for the decay of the
vector of eigenvalues {λ↓

j (ρ
L
m) : j = 1,2, . . . }, valid for all large m. The proof makes use of

the following decomposition property, valid for any pure state of a bipartite system, see [23].

Theorem 2.4 (Schmidt decomposition) Let |ψm〉 be the pure ground state of the composite
system [0,L] ∪ (�m \ [0,L]). There exist orthonormal bases {|uj 〉[0,L], |vk〉�m\[0,L]} for the
states of [0,L],�m \ [0,L] respectively, such that

|ψm〉 =
s∑

j=1

√
λ

↓
j (ρ

L
m) |uj 〉[0,L]|vj 〉�m\[0,L], (2.5)

where s, the Schmidt rank, is given by s = min{2L+1,22m}.

Proof We begin by writing |ψm〉 in terms of an orthonormal basis |α〉[0,L]|β〉�m\[0,L] where
|α〉[0,L] (respectively, |β〉�m\[0,L]) is an orthonormal basis for the spins in [0,L] (respectively,
�m \ [0,L]):

|ψm〉 =
2L+1
∑

α=1

22m
∑

β=1

ψ
[m]
αβ |α〉[0,L]|β〉�m\[0,L],

where

2L+1
∑

α=1

22m
∑

β=1

|ψ [m]
αβ |2 = 1.

The coefficients ψ
[m]
αβ constitute a 2L+1 × 22m matrix and, as such, we can apply the

singular-value decomposition [6] to write

ψ
[m]
αβ =

s∑

j=1

UαjdjVjβ,

where s = min{2L+1,22m}, Uαj is a 2L+1 × s-sized isometry, dj ≥ 0 for j = 1,2, . . . , s, and
Vjβ is an s × 22m-sized isometry. Defining

|uj 〉[0,L] =
2L+1
∑

α=1

Uαj |α〉[0,L], |vj 〉�m\[0,L] =
22m
∑

β=1

Vjβ |β〉�m\[0,L],

we see, because U and V are isometries, that {|uj 〉[0,L]} and {|vj 〉�m\[0,L]} are orthonormal
sets of vectors for the spins in [0,L] and �m \ [0,L], respectively.



310 G.R. Grimmett et al.

A simple computation shows that the reduced density operator ρL
m for the spins in [0,L]

is given by

ρL
m =

s∑

j=1

d2
j |uj 〉[0,L]〈uj | (2.6)

and so we identify dj =
√

λ
↓
j (ρL

m), after re-ordering the index j if necessary. Note that the

rank of ρL
m is less than or equal to the Schmidt rank of |ψm〉. �

We compute the entanglement of [0,L] with respect to the rest of the system as in (1.7),

S(ρL
m) = −

s∑

j=1

λ
↓
j (ρ

L
m) log2 λ

↓
j (ρ

L
m). (2.7)

Here is our main theorem. With the exception of the natural logarithm function ln, all loga-
rithms in the remainder of this section are taken to base 2.

Theorem 2.8 Consider the quantum Ising model (1.2) on n = 2m + L + 1 spins, with pa-
rameters λ, δ, and let γ , α, C be as in Theorem 2.2. If γ > 4 ln 2, there exist constants c1

and c2 depending on γ only such that

S(ρL
m) ≤ c1 log2 L + c2, m ≥ 0. (2.9)

In summary, the entanglement entropy S(ρL
m) is at most logarithmic in L if the field

strength δ is sufficiently large. The bound 4 ln 2 is sufficient but not necessary, and may be
improved with more care in the proof. We do not know how to replace this condition by
γ > 0.

We believe that the upper bound (2.9) is, in many cases, not tight. For the translation-
invariant subcritical case θ = λ/δ < 2 it is expected, on physical grounds, that the upper
bound can be improved to a constant. (See [4] and the references therein for an extensive re-
view of the physical arguments for entanglement scaling in non-critical and critical quantum
spin models.) Renormalisation group arguments and conformal field theory methods suggest
that, at a critical point, the upper bound should scale with logL. For θ > 2 the system enters
the supercritical regime where the system has two degenerate ground states, and the ground
state is no longer a pure state. Nonetheless, it is expected that the entropy of a block is again
bounded by a constant. For higher dimensions d ≥ 2 our argument breaks down because the
number of non-zero Schmidt coefficients for a distinguished region grows too quickly for
our perturbation argument.

The proof of Theorem 2.8 follows an iterative inductive procedure, where at each step
the distance k from the boundary of [0,L] is increased and the spectrum of the relative
density operator ρL

k is estimated. We illustrate the procedure by the following simple case:
consider the ground state |ψ0〉 for the Ising model defined on only L + 1 spins. In this case
the reduced density operator ρL

0 for [0,L] is exactly ρL
0 = |ψ0〉〈ψ0|, i.e., a pure state, with

entropy S(ρL
0 ) = 0. When m = 1, the reduced density operator ρL

1 for the region [0,L] is
mixed, but it has at most 22 non-zero eigenvalues. This follows from the Schmidt decompo-
sition applied to the ground state |ψ1〉 across the bipartition [0,L] ∪ (�1 \ [0,L]). Thus, the
entropy of the block [0,L] is bounded above by S(ρL

1 ) ≤ 2. Consider now the reduced den-
sity operator ρL

k . By the Schmidt decomposition, the operator ρL
k has at most 22k non-zero

eigenvalues. Assume that 2k < L + 1, and consider the addition of a single spin at either
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boundary. The new reduced density operator ρL
k+1 has at most four times as many non-zero

eigenvalues as ρL
k . However, by (2.3),

‖ρL
k − ρL

k+1‖ ≤ min{2,CLαe−γ k}, (2.10)

so that the eigenvalues of ρL
k remain close to those of ρL

k+1.

Proof of Theorem 2.8 Let K = �γ −1 ln(CLα)�, with C, α, γ as in Theorem 2.2. We shall
assume that m,K ≥ 2, γ > 4 ln 2. There are two cases, depending on whether m ≤ K or
m > K . Assume first that 2 ≤ m ≤ K . The rank of ρL

m equals the Schmidt rank 22m of |ψm〉.
Therefore,

S(ρL
m) ≤ sup

ρ

⎧
⎨

⎩
−

s∑

j=1

ρj logρj

⎫
⎬

⎭
,

where the supremum is over all non-negative sequences ρ = (ρj : 1 ≤ j ≤ 22m) with sum 1.
Hence,

S(ρL
m) ≤ log s ≤ log 22m = 2m ≤ 2K, m ≤ K. (2.11)

Assume next that m ≥ K . We shall apply the following theorem, see [6].

Theorem 2.12 (Weyl perturbation theorem) For Hermitian operators A and B on a Hilbert
space of dimension n,

max
j

∣
∣λ↓

j (A) − λ
↓
j (B)

∣
∣≤ ‖A − B‖. (2.13)

Let ε(r) = CLαe−γ (K+r), and note by the definition of K that

ε(r) ≤ e−γ r , r ≥ 0. (2.14)

Setting A = ρL
K , B = ρL

K+1 in Theorem 2.12, we deduce by (2.3) that

max
j

∣
∣λ↓

j (ρL
K) − λ

↓
j (ρL

K+1)
∣
∣≤ ε(0). (2.15)

Therefore,

|λ↓
j (ρL

K+1)| ≤ λ
↓
j (ρL

K) + ε(0), j = 1,2, . . . ,22K,

|λ↓
j (ρL

K+1)| ≤ ε(0), j = 22K + 1,22K + 2, . . . ,22(K+1).
(2.16)

We shall now iterate this process in order to obtain a bound on the eigenvalues of ρL
K+r ,

for r ≥ 1. There are three cases:

(i) j ≤ 22K , in which case

λ
↓
j (ρL

K+r ) ≤ λ
↓
j (ρL

K) +
r−1∑

l=0

ε(l); (2.17)
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(ii) 22K ≤ 22(K+s) < j ≤ 22(K+s+1) ≤ 22(K+r), in which case

λ
↓
j (ρL

K+r ) ≤
r−1∑

l=s

ε(l); (2.18)

(iii) 22(K+r) < j , in which case

λ
↓
j (ρL

K+r ) = 0. (2.19)

Let s = � 1
2 log j� − K , so that, by (2.14),

λ
↓
j (ρL

m) ≤ λ
↓
j (ρL

K) +
∞∑

l=0

e−γ l, j ≤ 22K,

λ
↓
j (ρL

m) ≤
∞∑

l=s

e−γ l, 22K < j,

which is to say that

λ
↓
j (ρL

m) ≤ λ
↓
j (ρL

K) + c0, j ≤ 22K,

λ
↓
j (ρL

m) ≤ c0e
−γ s, 22K < j,

(2.20)

where

c0 = 1

1 − e−γ
≤ 4

3
. (2.21)

By (2.20),

λ
↓
j (ρ

L
m) ≤ c′

0j
−ξ , 22K < j, (2.22)

where ξ = γ /(2 ln 2) > 2 and c′
0 = c′

0(L) = c0e
γ (K+1).

By (1.7),

S(ρL
m) = S1 + S2, (2.23)

where

S1 = −
ν∑

j=1

λ
↓
j (ρL

m) logλ
↓
j (ρL

m), S2 = −
2L+1
∑

j=ν+1

λ
↓
j (ρL

m) logλ
↓
j (ρL

m),

where ν (≥ 22(K+2)) is an integer to be chosen later. We shall bound S1 and S2 separately.
Since the λ

↓
j (ρL

m), 1 ≤ j ≤ ν, are non-negative with sum Q satisfying Q ≤ 1,

S1 ≤ logν. (2.24)

We shall use the tail estimate (2.22) to bound S2, making use of the fact that the function
f (x) = −x logx satisfies: f (0) = 0, and f (x) < f (y) whenever 0 < x < y < e−1.

By (2.21), (2.22), and the definition of ξ ,

λ
↓
j (ρL

m) ≤ c′
0

j ξ
< e−1, j ≥ 22(K+2),
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and so, recalling that ν ≥ 22(K+2) and ξ > 2,

S2 ≤ −
2L+1
∑

j=ν+1

c′
0

j ξ
log

(
c′

0

j ξ

)

≤ −
∞∑

j=ν+1

c′
0

j ξ
log

(
c′

0

j ξ

)

≤ −[c′
0 log c′

0]
∞∑

j=ν+1

1

j ξ
+ ξc′

0

ln 2

∞∑

j=ν+1

ln j

j ξ

≤ |c′
0 log c′

0|
∫ ∞

ν

1

xξ
dx + ξc′

0

ln 2

∫ ∞

ν

1

xξ
lnx dx

≤ c′
0ν

1−ξ

ξ − 1

(

| log c′
0| + ξ logν + ξ

ξ − 1

)

.

We now set ν = �eγ (K+1)� to obtain

S2 ≤ c1K + c2, (2.25)

for suitable constants c1, c2 depending on γ only. By (2.23)–(2.25),

S(ρL
m) ≤ c′

1K + c′
2, m ≥ K, (2.26)

which may be combined with (2.11) to obtain (2.9) with adjusted constants. �

3 Percolation Representation of the Ground State

Aizenman, Klein, and Newman [1] derived a random-cluster representation for the thermal
state of the quantum Ising Hamiltonian (1.2), thereby relating spin-correlation properties to
graph-connectivity properties. In this representation, the thermal density operator, defined
as

ρm(β) = e−βHm

tr(e−βHm)
, β = T −1 > 0, (3.1)

is described by a stochastic integral with respect to a Poisson measure. This Poisson mea-
sure is defined on the space–time graph �m,β = �m × [0, β], generated by associating a
continuous (imaginary) time variable t ∈ [0, β] to each site x ∈ �m. We refer to a line of the
form {x} × [0, β] as the time-line at the site x.

For completeness, we reproduce here the derivation of the random-cluster representation
of the ground state, and we derive the corresponding representation for the reduced state on
[0,L]. Note that the derivations are valid with the line �m replaced by any finite graph G.
By (1.2) with ν = 1

2

∑
〈x,y〉 λI and I the identity operator,

e−β(Hm+ν) = e−β(U+V ), (3.2)

where

U = −δ
∑

x

σ (1)
x , V = −1

2

∑

〈x,y〉
λ(σ (3)

x σ (3)
y − I),
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and the second summation is over all neighbouring pairs in �m. Although these two terms
do not commute, we may use the so-called Lie–Trotter formula (see, for example, [29]) to
factorize the exponential in (1.2) into single-site and two-site contributions due to U and V ,
respectively. By the Lie–Trotter formula,

e−(U+V )�t = e−U�te−V �t + O(�t2).

We divide the interval [0, β] into N parts each of length �t = 1/N , and deduce that

e−β(U+V ) = lim
�t→0

(
e−U�te−V �t

)β/�t
. (3.3)

We then expand the exponential, neglecting all terms of order o(�t), to obtain

e−β(Hm+ν)

= lim
�t→0

⎛

⎝
∏

x

[
(1 − δ�t)I + δ�tP 1

x

] ∏

〈x,y〉

[
(1 − λ�t)I + λ�tP 3

x,y

]
⎞

⎠

β/�t

, (3.4)

where P 1
x = σ 1

(x) + I and P 3
x,y = 1

2 (σ (3)
x σ (3)

y + I).
Let B be the set of basis vectors |σ 〉 for H of the form |σ 〉 =⊗

x |±〉x . There is a natural
one–one correspondence between B and the space P = ∏m+L

x=−m{−1,+1}. We shall some-
times speak of members of P as basis vectors, and of H as the Hilbert space generated
by P . Similarly, the space HL of spins indexed by the interval [0,L] may be viewed as
being generated by PL =∏L

x=0{−1,+1}.
The stochastic-integral representation may be obtained from (3.4) by inserting the reso-

lution of the identity
∑

σ∈P

|σ 〉〈σ | = I (3.5)

between any two factors of the products. The product (3.4) contains a collection of oper-
ators acting on sites x and on neighbouring pairs 〈x, y〉. By labelling the time-segments
as �t1,�t2, . . . ,�tN in [0, β], and neglecting terms of order o(�t), we may see that each
given time-segment arising in (3.4) contains one of: the identity I; an operator of the form
P 1

x ; an operator of the form P 3
x,y . Each such operator occurs in the time-segment with a

certain weight.
Let us consider the action of these operators on the states |σ 〉 for each infinitesimal time

interval �ti , i ∈ {1,2, . . . ,N}. The matrix elements of each of the single-site operators are
given by

〈σ ′|σ (1)
x + I|σ 〉 = δσ ′

x ,σx
+ δσ ′

x ,σx
= 1, (3.6)

where σx is the value of the spin at x in the (product) basis vector |σ 〉, and σx is the opposite
spin to σx . When it occurs in some time-segment �ti , we place a mark in the interval {x} ×
�ti , and we call this mark a death. Such a death has a corresponding weight δ�t + o(�t).

The matrix elements involving neighbouring pairs 〈x, y〉 yield

1

2
〈σ ′

xσ
′
y |σ (3)

x σ (3)
y + I|σxσy〉 = δσx ,σ ′

x
δσy ,σ ′

y
δσx ,σy . (3.7)

When this occurs in some time-segment �ti , we place a connection, called a bridge, between
the intervals {x}×�ti and {y}×�ti . Such a bridge has a corresponding weight λ�t +o(�t).
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In the limit �t → 0, the spin operators generate thus a Poisson process with intensity δ

of deaths in each time-line {x} × [0, β], and a Poisson process with intensity λ of bridges
between each pair {x} × [0, β], {y} × [0, β] of time-lines, for neighbouring x and y. This is
an independent family of Poisson processes. We write Dx for the set of deaths at the site x,
and Bx,y for the set of bridges between neighbouring sites x and y. The configuration space
is the set �m,β containing all finite sets of deaths and bridges, and we may assume without
loss of generality that no death is the endpoint of any bridge.

For two point (x, s), (y, t) ∈ �m,β , we write (x, s) ↔ (y, t) if there exists a path from
the first to the second that traverses time-lines and bridges but crosses no death. A cluster
is a maximal subset C of �m,β such that (x, s) ↔ (y, t) for all (x, s), (y, t) ∈ C. Thus the
connection relation ↔ generates a percolation process on � = �m,β , and we write P�,λ,δ

for the probability measure corresponding to the weight function on the configuration space
�m,β . That is, P�,λ,δ is the measure governing a family of independent Poisson processes of
deaths (with intensity δ) and of bridges (with intensity λ). The ensuing percolation process
has been studied in [5].

We shall later need to count the number of clusters of a configuration ω ∈ �m,β subject
to any of four possible boundary conditions, of which we specify two next (the other two
appear in the next section). The meaning of periodic boundary condition is that any clusters
containing two points of the form (x,0) and (x,β), for some x ∈ �m, are deemed to be the
same cluster, and they contribute only 1 to the total cluster count. The meaning of wired
boundary condition is that any clusters containing two points of the form (x,0) and (y,β),
for x, y ∈ �m, are deemed to be the same cluster and contribute only 1 to the total count.
We write kp(ω) (respectively, kw(ω)) for the number of clusters of ω subject to the periodic
(respectively, wired) boundary condition. Note that kw(ω) − 1 is the number of clusters of
ω (with free boundary conditions) that do not intersect [−m,m + L] × {0, β}.

Equations (3.6)–(3.7) are to be interpreted as saying the following. In calculating the op-
erator e−β(Hm+ν), one averages over contributions from realizations of the Poisson processes,
on the basis that the quantum spins are constant on every cluster of the corresponding per-
colation process, and each such spin-function is equiprobable.

More explicitly,

e−β(Hm+ν) =
∫

dP�,λ,δ(ω)

⎛

⎝T
∏

(x,t)∈D

∏

(〈x,y〉,t ′)∈B

P 1
x (t)P 3

x,y(t
′)

⎞

⎠ , (3.8)

where T denotes the time-ordering of the terms in the products, and B (respectively, D) is
the set of all bridges (respectively, deaths) of the configuration ω ∈ �m,β . The P 1

x (t) and
P 3

x,y(t) are to be interpreted as the relevant operators encountered at the deaths and bridges
of ω.

Let ω ∈ �m,β . Let �(ω) = �m,L(ω) be the space of all functions s : �m × [0, β] →
{−1,+1} that are constant on the clusters of ω, and let μω be the counting measure on
�(ω). Let K(ω) be the time-ordered product of operators in (3.8). We may evaluate the
matrix elements of K(ω) by inserting the resolution of the identity between any two factors
in the product, obtaining thus that

〈σ ′|K(ω)|σ 〉 =
∑

s∈�(ω)

1{s(·,0) = σ }1{s(·, β) = σ ′}, σ, σ ′ ∈ P, (3.9)

where 1{A}, and later 1A, denotes the indicator function of A. This is the number of spin-
allocations to the clusters of ω with given spin-vectors at times 0 and β .
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The matrix elements of the density operator ρm(β) are therefore given by

〈σ ′|ρm(β)|σ 〉 = 1

Zm

∫

1{s(·,0) = σ }1{s(·, β) = σ ′}dμω(s) dP�,λ,δ(ω), (3.10)

for σ,σ ′ ∈ P , where

Zm = Zm(β) = tr(e−β(Hm+ν)) (3.11)

is the partition function. Thus,

〈σ ′|ρm(β)|σ 〉 = 1

Zm

∫

dP�,λ,δ(ω)
∑

s∈�(ω)

1{s(·,0) = σ }1{σ(·, β) = σ ′}

= 1

Zm

∫

dP�,λ,δ(ω)2kw(ω)−11E(σ,σ ′)(ω), σ,σ ′ ∈ P, (3.12)

where the final term in the integrand is the indicator function of the event E(σ,σ ′) contain-
ing all ω ∈ �m,β such that: for all x, y ∈ [−m,m + L]:

(x,0) � (y,0) whenever σx �= σy,

(x,β) � (y,β) whenever σ ′
x �= σ ′

y,

(x,0) � (y,β) whenever σx �= σ ′
y .

See Fig. 1 for an illustration of the space–time configurations contributing to the Poisson
integral (3.12) for the matrix elements of ρm(β).

On setting σ = σ ′ in (3.12) and summing over σ ∈ P , we find that

Zm = tr(e−β(Hm+ν)) =
∫

2kp(ω) dP�,λ,δ(ω). (3.13)

Fig. 1 An example of a
space–time configuration
contributing to the Poisson
integral (3.12). The cuts are
shown as circles and the distinct
connected clusters (each of
which contributes a factor 2 to
the term 2kw(ω)) are indicated
with different line-types
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A method was developed in [1] (as amplified in the next section) to represent 〈σ ′|ρm(β)|σ 〉
as a certain probability, and to prove that it converges as β → ∞. In particular, it was shown
in [1] that the ground state ρm = |ψm〉〈ψm| satisfies

ρm = lim
β→∞

1

Zm

e−β(Hm+ν). (3.14)

4 Percolation Representation of the Reduced State

The analysis of the last section may be repeated for the reduced density operator ρL
m(β)

by tracing (3.8) over a complete set of states of the spins indexed by �m \ [0,L]. The
corresponding boundary condition for the configuration ω ∈ �m,β turns out to be partially
periodic, in that any two clusters of ω containing points of the form (x,0) and (x,β), for
some x ∈ [−m,−1]∪ [L+1,m+L], are deemed to be the same cluster and contribute only
1 to the total cluster count. No such assumption is made for sites x ∈ [0,L], and we refer to
the boundary condition on [0,L] as free. Let kpp(ω) be the number of clusters of ω subject to
the partially periodic boundary condition. We shall need a fourth way to count clusters also,
as follows. The periodic/wired boundary condition is that derived from the partially periodic
condition by the additional assumption of a wired condition on [0,L]: any two clusters of
ω containing points of the form (x,0) and (y,β), for some x, y ∈ [0,L], are deemed to be
the same cluster and contribute only 1 to the total cluster count. We write kpw(ω) for the
number of clusters with the periodic/wired boundary condition. Note that kpw(ω) − 1 is the
number of clusters of ω (with the partially periodic boundary condition) that do not intersect
[0,L] × {0, β}.

As in (3.10)–(3.12), the matrix elements of the reduced state ρL
m(β) are given by

〈σ ′
L|ρL

m(β)|σL〉 = 1

Zm

∫

dP�,λ,δ(ω)2kpw(ω)−11E(σL,σ ′
L
)(ω), σL,σ ′

L ∈ PL, (4.1)

where E(σL,σ ′
L) is the event that: if x, y ∈ [0,L] are such that σL,x �= σ ′

L,y then (x,0) �
pp

(y,β). Here, ↔pp denotes the connectivity relation subject to the partially periodic boundary
condition. See Fig. 2 for an illustration of the slit space–time, and of the connected clusters
contributing to the matrix elements of ρL

m(β).
We shall study the entropy of the reduced state via the operator norm of (2.1). Let |ψ〉 ∈

HL have unit L2-norm, so that

|ψ〉 =
∑

σL∈PL

c(σL)σL

for some function c : PL → C with
∑

σL∈PL
c(σL)c(σL) = 1. Then

〈ψ |ρL
m(β)|ψ〉 = 1

am,β

∑

σL,σ ′
L
∈PL

c(σL)c(σ ′
L)φm,β(σL,σ ′

L) (4.2)

where

φm,β(σL,σ ′
L) = 1

Nm

〈σ ′
L|ρL

m(β)|σL〉, σL,σ ′
L ∈ PL, (4.3)
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Fig. 2 An example of a
space–time configuration
contributing to the matrix
elements for the reduced density
operator ρL

m(β). The box has
partially periodic boundary
conditions and is drawn in such a
way that the slit SL is at the
centre. The spin configurations
on the top and the bottom of the
cut, and the connected clusters
for this new cut geometry are
indicated

Nm =
∑

σL,σ ′
L
∈PL

〈σ ′
L|ρL

m(β)|σL〉, (4.4)

and

am,β = Zm/Nm. (4.5)

We shall see in the next sections that (4.2)–(4.4) may be written in terms of a certain proba-
bility measure on �m,β called the random-cluster measure.

5 The Continuum Random-Cluster Model

Perhaps the best way to express the percolation representations of the ground and reduced
states is in terms of the so-called random-cluster model on Z × R. We summarise the def-
inition and basic properties of this model in this section, using the language of probability
theory. The remaining part of the paper is a self-contained account of the model, and in-
cludes the proof of Theorem 2.2, see Theorem 6.5. Of special interest will be the property
of so-called ratio weak-mixing, studied earlier for the lattice case in [2, 3].

We shall consider the (two-dimensional) continuum random-cluster model on the ‘space–
time’ subset Z×R of the plane. The underlying space is {(x, t) : x ∈ Z, t ∈ R}, and we refer
to Z as the space-line and R as the time-line. Everything proved here has a counterpart,
subject to minor changes, in the more general setting of Z

d × R with d ≥ 2, but we shall
restrict ourselves to the case d = 1.
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We shall construct a family of probabilistic models on Z × R. Let λ, δ ∈ (0,∞). In the
simplest such model, we construct ‘deaths’ and ‘bridges’ as follows. For each x ∈ Z, we
select a Poisson process Dx of points in {x}× R with intensity δ; the processes {Dx : x ∈ Z}
are independent, and the points in the Dx are termed ‘deaths’. For each x ∈ Z, we select a
Poisson process Bx of points in {x + 1

2 } × R with intensity λ; the processes {Bx : x ∈ Z}
are independent of each other and of the Dy . For each x ∈ Z and each (x + 1

2 , t) ∈ Bx , we
draw a unit line-segment in R

2 with endpoints (x, t) and (x + 1, t), and we refer to this as
a ‘bridge’ joining its two endpoints. For (x, s), (y, t) ∈ Z × R, we write (x, s) ↔ (y, t) if
there exists a path π in R

2 with endpoints (x, s), (y, t) such that: π comprises sub-intervals
of Z × R containing no deaths, together possibly with bridges. For �,� ⊆ Z × R, we write
� ↔ � if there exist a ∈ � and b ∈ � such that a ↔ b.

For (x, s) ∈ Z × R, let Cx,s be the set of all points (y, t) such that (x, s) ↔ (y, t). The
clusters Cx,s have been studied in [5], where it was shown in particular that

Pλ,δ(|C0| < ∞)

{
= 1 if θ ≤ 1,

< 1 if θ > 1,
(5.1)

where 0 = (0,0) is the origin of Z × R, θ = λ/δ, and |C| denotes the (one-dimensional)
Lebesgue measure of the cluster C. The process thus constructed is a continuum percolation
model in two dimensions. As noted in [5], it differs from the contact model on Z only in that
two points may be joined in the direction of either increasing or decreasing time. See [19,
20] for details of the contact model.

Just as the percolation model on a lattice may be generalised to the so-called random-
cluster model (see [12]), so may the continuum percolation model be extended to a contin-
uum random-cluster model. We shall work here mostly on a bounded box rather than the
whole space Z × R. Let a, b ∈ Z, s, t ∈ R satisfy a ≤ b, s ≤ t , and write � = [a, b] × [s, t]
for the box {a, a + 1, . . . , b} × [s, t] of Z × R. Its boundary ∂� is the set of all points
(x, y) ∈ � such that: either x ∈ {a, b}, or y ∈ {s, t}, or both. As sample space we take the set
�� comprising all finite subsets (of �) of deaths and bridges, and we assume that no death
is the endpoint of any bridge. For ω ∈ ��, we write B(ω) and D(ω) for the sets of bridges
and deaths, respectively, of ω. We take as σ -field F� that generated by the open sets in the
associated Skorohod topology, see [5, 10].

In order to maintain the link to the quantum Ising model, we choose to impose a
top/bottom periodic boundary condition on �; that is, for every x ∈ [a, b], we identify the
two points (x, s) and (x, t). The remaining boundary of �, denoted ∂h�, is the set of all
points of the form (x,u) ∈ � with x ∈ {a, b}. The theory developed here is valid for more
general boundary conditions.

Let P�,λ,δ denote the probability measure associated with the above continuum per-
colation model on �. For a given configuration ω of deaths and bridges on �, let k(ω)

be the number of its clusters (subject to the top/bottom periodic boundary condition). Let
q ∈ (0,∞), and define the ‘continuum random-cluster’ probability measure P�,λ,δ,q by

dP�,λ,δ,q(ω) = 1

Z
qk(ω)dP�,λ,δ(ω), ω ∈ ��, (5.2)

for an appropriate ‘partition function’ Z.
The theory of the continuum random-cluster model may be developed in very much the

same way as that for the random-cluster model on a discrete lattice, see [12]. We shall
assume the basic theory without labouring the calculations necessary for full rigorous proof.
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The details may be obtained by following minor variants of the relevant strategy for the
discrete case.

If μ is a probability measure and f a function on some measurable space, we denote by
μ(f ) the expectation of f under μ.

The space �� is a partially ordered space with order relation given by: ω1 ≤ ω2 if
B(ω1) ⊆ B(ω2) and D(ω1) ⊇ D(ω2). A random variable X : �� → R is said to be in-
creasing if X(ω) ≤ X(ω′) whenever ω ≤ ω′. An event A ∈ F� is said to be increasing if
its indicator function 1A is increasing. Given two probability measures μ1, μ2 on the mea-
surable pair (��,F�), we write μ1 ≤st μ2 if μ1(X) ≤ μ2(X) for all bounded increasing
continuous random variables X : �� → R.

The measures P�,λ,δ,q have certain properties of stochastic ordering as the parameters
�, λ, δ, q vary. There are two approaches to such stochastic inequalities, either by working
on discrete graphs and passing to a spatial limit to obtain the continuum measures, or by
working directly in the continuum. We shall not pursue this here, but refer the reader to [5]
for a discussion of the case q = 1. The following two facts will be useful later. First, P�,λ,δ,q

satisfies a positive-association (FKG) inequality when q ≥ 1, and secondly,

P�,λ,δ,q ≤st P�,λ,δ when q ≥ 1. (5.3)

In the current paper we shall work mostly with finite-volume measures, that is, with
measures defined on boxes of the form of � = [a, b] × [s, t]. We assume henceforth that
q ≥ 1. Having established the necessary estimates on such boxes, we will pass to the vertical
infinite-volume limit as s → −∞, t → ∞. The existence of such a limit is not explored in
detail here, but we note the following (see [1]). If we work on � with top/bottom wired
or free boundary conditions, then the limit measures exist as a consequence of positive
association (very much as in the lattice case, see [12]). Furthermore, the weak limit with
top/bottom periodic boundary conditions exists and agrees with the first two limit measures
whenever the latter are equal. A sufficient condition for this is that the wired limit measure
does not percolate. Since the limit of � as t − s → ∞ is a strip of bounded width, this
condition is satisfied for all λ, δ ∈ (0,∞), and therefore the limit measures exist and do not
depend on the choice of boundary condition.

The situation is slightly less clear in the doubly-infinite-volume limit, as � ↑ Z × R. The
self-dual point for the continuum random-cluster measure on Z×R is given by λ/δ = q , and
thus one expects the free and wired limit measures to be equal at least whenever λ/δ �= q . It
may be shown using duality that there is no percolation when λ/δ < q , and it follows that
the weak limits

Pλ,δ,q = lim
�↑Z×R

P�,λ,δ,q , q ≥ 1,

exist if λ/δ < q . We shall make no reference to this later.
Just as the q-state Potts model may be coupled with a random-cluster model on a given

graph, so may we consider a continuum Potts model on a box � = [a, b] × [s, t]. Let q ∈
{2,3, . . . }. We sample ω according to P�,λ,δ,q , and we allocate a randomly chosen spin from
the set {1,2, . . . , q} to each cluster of ω; the points of each cluster receive a given spin-
state chosen uniformly at random from the q possible local states, and different clusters
receive independent spin-states. We call the ensuing spin-configuration a q-state continuum
Potts model, and a continuum Ising model when q = 2. When q = 2, by convention we
take the local spin-space to be {−1,+1} rather than {1,2}, and this is the case of interest
in the current paper. We note in passing that the q-state continuum random-cluster model
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corresponds to a certain q-state quantum Potts model constructed in a manner similar to that
of the quantum Ising model.

The set of spin-configurations of the continuum q-state Potts model is the space ��

given as follows. Let F be the set of finite subsets of �. For D ∈ F , let J (D) be the set
of maximal intervals of the time-lines that contain no point in D (subject to the top/bottom
boundary condition on �). The space �� is defined as the union over D of the set of func-
tions σ : J (D) → {1,2, . . . , q} with the property that σ(x,u−) �= σ(x,u+) for all (x,u) ∈ D.
The corresponding probability measure on �� is found by integrating over ω in the above
recipe, as in the following summary. For σ ∈ ��, write Dσ for the set of points (x,u) ∈ �

such that σ(x,u−) �= σ(x,u+). The probability measure P associated with the continuum q-state
Potts model on � is given by

dP(σ ) = 1

Z′ e
λL(σ)dPδ(Dσ ), σ ∈ ��,

where Pδ is the law of an independent family of Poisson processes with intensity δ on the
time-lines indexed by [a, b], and

L(σ) =
∑

x∼y

∫ t

s

δσ(x,u),σ(y,u)
du (5.4)

is the total length of neighbouring time-lines where the spins are equal. Here, the summation
is over all unordered pairs x, y of neighbours. We shall not develop the theory of such mea-
sures here, save for noting that P has the spatial Markov property (see [8, 11] for accounts
of the spatial Markov property for a lattice model). For σ ∈ �� and a measurable subset S

of �, we write σS for the value of σ restricted to S, and GS for the σ -field generated by σS .
The above definition of the continuum random-cluster model is based on an assumption

of free boundary conditions on left/right sides of the region � (we shall always assume
top/bottom periodic conditions in this paper). More general boundary conditions may be
introduced as follows. Let τ be an admissible configuration of deaths and bridges off the
box �. That is, τ comprises a set D(τ) of deaths and a set B(τ) of bridges of (Z × R) \ �

such that: the intersection of D(τ) and B(τ) with any bounded sub-interval of Z × R is
finite, and no death is the endpoint of any bridge. For ω ∈ ��, we denote by (ω, τ ) the
composite configuration comprising ω on � and τ on its complement. We write P

τ
�,λ,δ,q for

the continuum random-cluster measure on �� with the difference that the number k(ω) of
clusters in (5.2) is replaced by the number k(ω, τ) of clusters of (ω, τ ) that intersect � (sub-
ject, as usual, to the top/bottom periodic boundary condition). As in the lattice case, P

τ
�,λ,δ,q

is stochastically increasing in τ . One may consider also periodic boundary conditions.
We extend this discussion now to boundary conditions defined in terms of spins rather

than deaths/bridges. Let q ≥ 2 be an integer. Let τ be a boundary condition as above, and
let η be a mapping from its clusters to the set {1,2, . . . , q}; that is, η allocates a spin to each
cluster of τ , viewed as a configuration on (Z × R) \ �. Let the measure P

η

�,λ,δ,q be given
as P�,λ,δ,q , conditioned on the event that no two points x, y ∈ ∂h� with η(x) �= η(y) are
connected. We now allocate spins to the clusters of the composite configuration (ω, τ ) by: if
a cluster C contains a vertex y that is already labelled, the entire cluster of y takes that label,
and if no such vertex exists, the spin of C is chosen uniformly at random from {1,2, . . . , q},
independently of the spins on other clusters.
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6 Basic Estimate for the Slit Box

We consider next a variant of the above model in which the box � possesses a ‘slit’ at its
centre. Let L ≥ 0 and SL = [0,L] × {0}. We think of SL as a collection of L + 1 vertices
labelled in the obvious way as x = 0,1,2, . . . ,L. For m ≥ 2, β > 0, let �m,β be the box
[−m,m + L] × [− 1

2β, 1
2β] subject to a ‘slit’ along SL. That is, �m,β is the usual box ex-

cept in that each vertex x ∈ SL is replaced by two distinct vertices x+ and x−. The vertex
x+ (respectively, x−) is attached to the half-line {x} × (0,∞) (respectively, the half-line
{x}× (−∞,0)); there is no direct connection between x+ and x−. Write S±

L = {x± : x ∈ SL}
for the upper and lower sections of the slit SL. We now construct the continuum random-
cluster measure φm,β on �m,β with top/bottom periodic boundary condition and parameters
λ, δ, q = 2. We shall abuse notation by using φm,β to denote also the coupling of the con-
tinuum random-cluster measure and the spin-configuration on �m,β obtained as above. An
illustration of the slit box is presented in Fig. 2.

Let �m,β be the sample space of the continuum random-cluster model on �m,β , and �m,β

the set of all possible spin-configurations. That is, �m,β comprises all admissible allocations
of spins to the clusters of configurations in �m,β . For σ ∈ �m,β and x ∈ SL, write σ±

x for
the spin-state of x±. Let �L = {−1,+1}L+1 be the set of spin-configurations of the vectors
{x+ : x ∈ SL} and {x− : x ∈ SL}, and write σ+

L = (σ+
x : x ∈ SL) and σ−

L = (σ−
x : x ∈ SL).

It may be checked from (4.1) that

φm,β(σ−
L = ε−, σ+

L = ε+) ∝ 〈ε−|ρL
m(β)|ε+〉, ε−, ε+ ∈ �L,

whence f (ε+, ε−) = φm,β(σ−
L = ε−, σ+

L = ε+) is the function defined in (4.3). It is easily
seen that am,β , given in (4.5), may be expressed as

am,β = φm,β(σ+
L = σ−

L ). (6.1)

On recalling (2.1), by (4.2),

〈ψ |ρL
m(β) − ρL

n (β)|ψ〉 = φm,β(c(σ+
L )c(σ−

L ))

am,β

− φn,β(c(σ+
L )c(σ−

L ))

an,β

(6.2)

where c : �L → C and

ψ =
∑

σL∈�L

c(σL)σL ∈ HL.

The reduced ground state ρL
m is obtained from ρL

m(β) by taking the limit as β → ∞. By
the remarks in Sect. 5, there exists a probability measure φm such that

φm,β ⇒ φm as β → ∞.

Furthermore, the σ±
L are cylinder functions, and therefore, as β → ∞,

φm,β(c(σ+
L )c(σ−

L )) → φm(c(σ+
L )c(σ−

L )), (6.3)

and

am,β → am = φm(σ+
L = σ−

L ). (6.4)
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In order to prove Theorem 2.2, we seek the function c : �L → C, with

‖c‖ =
√∑

ε∈�L

|c(ε)|2 = 1,

that maximises the modulus of (6.2). By splitting (6.2) into its real and imaginary parts, and
applying the triangle inequality, we see that it suffices to consider functions c taking only
non-negative real values.

Here is the main estimate of this section, of which Theorem 2.2 is an immediate corollary
with adapted values of the constants.

Theorem 6.5 Let λ, δ ∈ (0,∞) and write θ = λ/δ. If θ < 1, there exist α,C,M ∈ (0,∞),
depending on θ only, such that the following holds. There exists γ = γ (θ) satisfying γ > 0
when θ < 1 such that, for all L ≥ 1 and M ≤ m ≤ n < ∞,

sup
‖c‖=1

∣
∣
∣
∣
φm(c(σ+

L )c(σ−
L ))

am

− φn(c(σ
+
L )c(σ−

L ))

an

∣
∣
∣
∣≤ CLαe−γm, (6.6)

where the supremum is over all functions c : �L → R with ‖c‖ = 1. The function γ may be
chosen to satisfy γ (θ) → ∞ as θ ↓ 0.

The condition θ < 1 is important in that it permits a comparison of the q = 2 continuum
random-cluster model on Z × R with the continuum percolation model. The claim of the
theorem is presumably valid for θ < θc where θc is the critical point of the former model.
(It may be shown that θc ≥ 2, and we conjecture that θc = 2, the self-dual point.) Similarly,
Theorem 6.5 has a counterpart in d ≥ 2 dimensions.

We shall require for the purposes of comparison the following exponential-decay theorem
for continuum percolation. Let �m denote the box [−m,m]2, and let I = {0} × [− 1

2 , 1
2 ] be

a unit ‘time-segment’ centred at the origin.

Theorem 6.7 Let λ, δ ∈ (0,∞). There exist C = C(λ, δ) ∈ (0,∞) and γ = γ (λ, δ) satisfy-
ing γ > 0 when λ/δ < 1, such that:

Pλ,δ

(
I ↔ ∂�m

)≤ Ce−γm, m ≥ 0.

The function γ (λ, δ) may be chosen to satisfy γ → ∞ as δ → ∞ for fixed λ.

Proof Consider the continuum percolation process with parameters λ, δ. The existence of
such γ is proved in [5]. That γ → ∞ as δ ↓ 0 (with λ fixed) may be proved by bounding the
cluster at the origin by a branching process. Consider an age-dependent branching process
in which each particle lives for a length of time having the distribution of the sum of two
independent exponentially-distributed random variables with parameter δ. During its life-
time, it has children in the manner of a Poisson process with parameter 2λ, so that a typical
family-size N has generating function

GN(s) = E(sN) =
(

δ

δ − 2λ(s − 1)

)2

, |s| ≤ 1.

The process is subcritical if E(N) < 1, which is to say that G′
N(1) = 4λ/δ < 1. When this

holds, the tail of the total number M of particles decays exponentially, and similarly the



324 G.R. Grimmett et al.

aggregate lifetime U of the particles has an exponentially-decaying tail. See [13, 14] for
accounts of the theory of branching processes.

The branching process dominates C in the following sense. Identify the progenitor of the
branching process and the origin 0 of Z × R. The length of the maximal death-free time-
interval containing the origin has the distribution of the lifetime of 0. The number of bridges
with an endpoint in this interval has the distribution of N . Each such bridge has endpoints
of the form (0, s) and (x, s) where x = ±1. When we iterate this, we find that the number of
bridges in the maximal death-free interval containing (x, s) is dominated (stochastically) by
N . Arguing inductively, the number of bridges in the cluster C is dominated stochastically
by the total size M of the branching process.

The horizontal displacement of C is thus smaller (in distribution) than the total size M

of the branching process. It is standard that the tail of M satisfies P (M > m) ≤ Ce−νm for
some C,ν > 0 depending on λ, δ, and furthermore that ν → ∞ if δ ↓ 0 with λ held fixed.
The behaviour of ν may be calculated exactly by elementary means, as follows. One may
consider a variant of the branching process in which each particle has a lifetime with the
exponential distribution, parameter δ, and has pairs of children at rate 2λ while alive. The
probability generating function of the total progeny may be found in closed form in the usual
way (see [13], Problem 5.12.11), and one obtains thus a sharp estimate for ν via Markov’s
inequality.

Similarly, the vertical displacement of C is smaller (in distribution) than the aggregate
lifetime U of the particles in the branching process. Just as above, U has exponentially-
decaying tail when E(N) < 1, and the constant in the exponent tends to infinity as δ ↓ 0 for
fixed λ.

Now,

Pλ,δ(0 ↔ ∂�m) ≤ P (M ≥ m) + P (U ≥ m).

A little more is needed for the theorem. The interval I is connected to a number of bridges
having the Poisson distribution with parameter 2λ. The clusters generated by the ends of
these bridges have sizes dominated (stochastically) as above, and the claim follows. �

In the proof of Theorem 6.5, we make use of the following two lemmas, which are proved
in the next section using the method of ‘ratio weak-mixing’.

Lemma 6.8 Let λ, δ ∈ (0,∞) satisfy λ/δ < 1. There exist constants α,C1,C2 ∈ (0,∞)

such that: for all L ≥ 0, m ≥ 1, β > 2m + L, and all ε+, ε− ∈ �L,

C1L
−α ≤ φm,β(σ+

L = ε+, σ−
L = ε−)

φm,β(σ+
L = ε+)φm,β(σ−

L = ε−)
≤ C2L

α.

In the second lemma we allow a general boundary condition on �m,β .

Lemma 6.9 Let λ, δ ∈ (0,∞). There exist constants C,γ ∈ (0,∞) satisfying 0 < γ < 1
when λ/δ < 1 such that: for all L ≥ 0, m ≥ 1, β ≥ 4(m + L + 1), all events A ⊆ �L × �L,
and all admissible random-cluster boundary-conditions τ and spin boundary-conditions η

of �m,β ,
∣
∣
∣
∣
∣

φα
m,β((σ+

L ,σ−
L ) ∈ A)

φm,β((σ+
L ,σ−

L ) ∈ A)
− 1

∣
∣
∣
∣
∣
≤ Ce− 2

7 γm, for α = τ, η,
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whenever the right side of the inequality is less than or equal to 1. The function γ may be
taken as that of Theorem 6.7.

The above two lemmas are stated in terms of the box �m,β with top/bottom periodic
boundary conditions. Their proofs are valid under other boundary conditions also, including
free boundary conditions. We make use of this observation during the proofs that follow.

The supremum in Theorem 6.5 may be handled by way of the next lemma.

Lemma 6.10 Let μ be a probability measure on the finite set S. Let C be the class of
functions c : S → [0,∞) such that

∑
s∈S c(s)2 = 1. Then

∑

s∈S

c(s)μ(s) ≤
√∑

s∈S

μ(s)2, c ∈ C,

with equality if and only if

c(s) = μ(s)
√∑

t∈S μ(t)2
, s ∈ S.

Proof of Lemma 6.10 This is easily proved using a Lagrange multiplier. �

Proof of Theorem 6.5 Let 0 < λ < δ, and let γ be as in Theorem 6.7. Let 2 ≤ m ≤ n < ∞
and take β > 4(m + L + 1). Later we shall let β → ∞. Since φm,β ≤st φn,β , we may couple
φm,β and φn,β via a probability measure ν on pairs (ω1,ω2) of configurations on �n,β in such
a way that ν(ω1 ≤ ω2) = 1. It is standard (as in [12, 22]) that we may find ν such that ω1 and
ω2 are identical configurations within the region of �m,β that is not connected to ∂h�m,β

in the upper configuration ω2. Let D be the set of all pairs (ω1,ω2) ∈ �n,β × �n,β such
that: ω2 contains no path joining ∂B to ∂h�m,β , where B = [−r, r + L] × [−2(r + L + 1),

2(r + L + 1)] and r (< 1
2m) will be chosen later. We take free boundary conditions on B .

The relevant regions are illustrated in Fig. 3.
Having constructed the measure ν accordingly, we may now allocate spins to the clusters

of ω1 and ω2 in the manner described earlier. This may be done in such a way that, on the
event D, the spin-configurations associated with ω1 and ω2 within B are identical. We write
σ1 (respectively, σ2) for the spin-configuration on the clusters of ω1 (respectively, ω2), and
σ±

i,L for the spins of σi on the slit SL.

Fig. 3 The boxes �n,β , �m,β ,
and B
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For c : �L → [0,∞) with ‖c‖ = 1, let

Sc = c(σ+
1,L)c(σ−

1,L)

am,β

− c(σ+
2,L)c(σ−

2,L)

an,β

, (6.11)

so that

φm,β(c(σ+
L )c(σ−

L ))

am,β

− φn,β(c(σ+
L )c(σ−

L ))

an,β

= ν(Sc;D) + ν(Sc;D). (6.12)

Here, D is the complement of D, and ν(f ;D) denotes ν(f 1D).
We consider first the term ν(Sc;D) in (6.12). On the event D, we have that σ±

1,L = σ±
2,L,

so that

|ν(Sc;D)| ≤
∣
∣
∣
∣1 − am,β

an,β

∣
∣
∣
∣
φm,β(c(σ+

L )c(σ−
L ))

am,β

. (6.13)

By Lemmas 6.8 and 6.10,

φm,β(c(σ+
L )c(σ−

L )) =
∑

ε±∈�L

c(ε+)c(ε−)φm,β(σ+
L = ε+, σ−

L = ε−)

≤ C2L
αφm,β(c(σ+

L ))φm,β(c(σ−
L ))

= C2L
α

⎛

⎝
∑

ε∈�L

c(ε)φm,β(σ+
L = ε)

⎞

⎠

2

≤ C2L
α
∑

ε∈�L

φm,β(σ+
L = ε)2, (6.14)

where we have used reflection-symmetry in the horizontal axis at the intermediate step. By
Lemma 6.8 and reflection-symmetry again,

am,β =
∑

ε∈�L

φm,β(σ+
L = σ−

L = ε)

≥ C1L
−α

∑

ε∈�L

φm,β(σ+
L = ε)2.

Therefore,

φm,β(c(σ+
L )c(σ−

L ))

am,β

≤ C3L
2α, (6.15)

where C3 = C2/C1.
We set A = {σ+

L = σ−
L } in Lemma 6.9 to find that, for sufficiently large m ≥ M ′(λ, δ),
∣
∣
∣
∣
∣

φ
η

m,β(σ+
L = σ−

L )

φm,β(σ+
L = σ−

L )
− 1

∣
∣
∣
∣
∣
≤ Ce− 2

7 γm <
1

2
.

By averaging over η, sampled according to φn,β , we deduce that

∣
∣
∣
∣
φn,β(σ+

L = σ−
L )

φm,β(σ+
L = σ−

L )
− 1

∣
∣
∣
∣≤ Ce− 2

7 γm <
1

2
,
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which is to say that
∣
∣
∣
∣
an,β

am,β

− 1

∣
∣
∣
∣≤ Ce− 2

7 γm <
1

2
. (6.16)

We make a note for later use. By the remark after Lemma 6.9, inequality (6.15) holds
also with φm,β replaced by the continuum random-cluster measure φB on the box B with
free boundary conditions. Similarly, we may take C and M ′ above such that

∣
∣
∣
∣
an,β

aB

− 1

∣
∣
∣
∣≤ Ce− 2

7 γ r <
1

2
, r ≥ M ′(λ, δ), (6.17)

where aB = φB(σ+
L = σ−

L ).
Inequalities (6.15) and (6.16) may be combined as in (6.13) to obtain

|ν(Sc;D)| ≤ C4L
2αe− 2

7 γm (6.18)

for an appropriate constant C4 = C4(λ, δ) and all m ≥ M ′(λ, δ).
We turn to the term ν(Sc;D) in (6.12). Evidently,

|ν(Sc;D)| ≤ Am + Bn, (6.19)

where

Am = ν(c(σ+
1,L)c(σ−

1,L);D)

am,β

, Bn = ν(c(σ+
2,L)c(σ−

2,L);D)

an,β

.

There exist constants C5, M ′′ depending on λ, δ, such that, for m > r ≥ M ′′,

Bn = ν(D)

an,β

ν(c(σ+
2,L)c(σ−

2,L) | D)

= ν(D)

an,β

φn,β

(
φτ

B(c(σ+
2,L)c(σ−

2,L)) | D)

≤ ν(D)

aB

C5φB(c(σ+
2,L)c(σ−

2,L)) (6.20)

by Lemma 6.9 with φm,β replaced by φB , and (6.17). At the middle step, we have used
conditional expectation given the configuration τ on �m,β \ B . By (6.15) applied to the
measure φB , there exists C6 = C6(λ, δ) such that

1

aB

φB(c(σ+
2,L)c(σ−

2,L)) ≤ C6L
2α. (6.21)

Inequalities (6.20)–(6.21) imply an upper bound for Bn.
A similar upper bound is valid for Am, on noting that the conditioning on D imparts cer-

tain information about the configuration ω1 outside B but nothing further about ω1 within B .
Combining this with (6.19)–(6.21), we find that, for r ≥ M ′′′(λ, δ) and some C7 = C7(λ, δ),

|ν(Sc;D)| ≤ ν(D)C7L
2α. (6.22)

Let r = M ′′′ to obtain by (5.3) and Theorem 6.7 that

ν(D) ≤ C8(r + L)e− 1
2 γm ≤ C9Le− 1

2 γm, m ≥ 2M ′′′, (6.23)
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for some C8, C9. We combine (6.18), (6.22), (6.23) as in (6.12), and let β → ∞ to obtain
(6.6) from (6.3)–(6.4), for m ≥ max{M ′,M ′′,2M ′′′}. The constants C, γ may be amended
to obtain the required inequality.

Finally, we remark that α, C, and M depend on λ and δ. The left side of (6.6) is invariant
under re-scalings of the time-axes, that is, under the transformations (λ, δ) �→ (λη, δη) for
η ∈ (0,∞). We may therefore work with the new values λ′ = θ , δ′ = 1, with appropriate
constants α(θ,1), C(θ,1), M(θ,1). �

7 Ratio Weak-Mixing

Our proofs of Lemmas 6.8 and 6.9 make use of various couplings of random-cluster mea-
sures. Such couplings are fairly standard (see [12, 22] for example) and have been utilised
in [2, 3] in a study of ratio weak-mixing for random-cluster and spin models on discrete
lattices. We follow in part the arguments of [2, 3], but we are not concerned here with the
level of generality of those papers.

Here is some notation. Let � be a box in Z × R (we shall later consider a box � with a
slit SL, for which the same definitions and results are valid). A path π of � is an alternating
sequence of disjoint intervals (contained in �) and unit line-segments of the form [z0, z1],
b12, [z2, z3], b34, . . . , b2k−1,2k , [z2k, z2k+1], where: each pair z2i , z2i+1 is on the same ‘time-
line’ of �, and b2i−1,2i is a unit line-segment with endpoints z2i−1 and z2i , perpendicular to
the time-lines. Note that the equality z2i = z2i+1 is permitted. The path π is said to join z0

and z2k+1. The length of π is its one-dimensional Lebesgue measure, with π viewed as a
union of line-segments of R

2; note that each bridge of π contributes 1 to its length. A circuit
D of � is a path except inasmuch as z0 = z2k+1. A set D is called linear if it is a disjoint
union of paths and/or circuits. Let �, � be disjoint subsets of �. The linear set D is said to
separate � and � if every path of � from � to � passes through D, and D is minimal with
this property in that no strict subset of D has the property.

Let ω ∈ ��. An open path π of ω is a path of � such that, in the notation above, the
intervals [z2i , z2i+1] contain no death of ω, and the line-segments b2i−1,2i are bridges of ω.

The (one-dimensional) Lebesgue measure of a measurable subset S of Z × R is de-
noted |S|. Let S and T be measurable subsets of �. The distance d(S,T ) from S to T is
defined to be the infimum of the lengths of paths having one endpoint in S and one in T .
Note that the distance function d depends on the choice of � (and, in particular, on the
boundary conditions and the presence/absence of a slit).

Let φ� denote the random-cluster measure on �� with parameters λ, δ, q = 2 (with
top/bottom periodic boundary condition). Let � be a measurable subset and � a finite subset
of � such that � ∩ � = ∅. We shall prove a ‘ratio weak-mixing property’ of the spin-
configurations in � and �. In order to introduce the necessary couplings, we consider next
a certain ‘wired’ boundary condition on �. Let φ denote the continuum random-cluster
measure on � with parameters λ, δ, q = 2, but subject to the difference that the set of
clusters that intersect � ∪ � count only 1 in all towards the cluster count k(ω) in (5.2). We
call φ a ‘wired random-cluster measure’. It is standard, just as in the discrete case, that φ

may be used to generate a random spin-configuration on � corresponding to a continuum
Ising model conditioned on having the same spin at all points in � ∪ �: let ω be sampled
according to φ, and allocate a randomly chosen spin from the spin set {−1,+1} to each
cluster of ω, these spins being independent between clusters.

Just as in the lattice case, one may use φ to obtain random-cluster measures with other
boundary conditions. Let τ ∈ �� , and let Ti = {x ∈ � : τ(x) = i} for i = ±1. The corre-
sponding random-cluster measure, denoted φτ

� (as in Sect. 5), is that obtained by: (i) the set
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of clusters intersecting � counts only 1 in all towards the cluster count in (5.2), and (ii) we
condition on the event that there exists no path joining T1 and T2. Since φ ≥st φτ

�, there
exists a coupling κ of the two measures with the property that κ((ω1,ω2) : ω1 ≥ ω2) = 1. It
is natural to allocate spins to the clusters of ω1 and ω2 in such a way that, whenever a cluster
C of ω2 is also a cluster of ω1, and C ∩ � = ∅, then these two clusters have the same spin.

One may carry out the above construction simultaneously for two (or more) τ . Let τ ,
τ ′ ∈ �� . We may find a coupling of φ, φτ

�, φτ ′
� such that the first component is greater than

each of the other two. That is, there exists a measure κ on �3
� = {(ω,ω1,ω2)} such that: ω

(respectively, ω1, ω2) has law φ (respectively, φτ
�, φτ ′

� ), and κ(ω ≥ ω1,ω2) = 1.

Theorem 7.1 (Ratio weak-mixing) Let � ⊆ � be measurable, let � ⊆ � be finite such that
�∩� = ∅, and let D be a linear subset of � that separates � and �. Let λ, δ ∈ (0,∞). For
τ, τ ′ ∈ �� and α ∈ ��,

∣
∣
∣
∣
φτ

�(σ� = α)

φτ ′
� (σ� = α)

− 1

∣
∣
∣
∣≤ 2

(

t1 + 2t2 + t1 + t2

1 − t1 − 2t2

)

, (7.2)

whenever the right side is less than or equal to 1, and where

t1 = φ(� ↔ D), t2 =
√

φ(D ↔ �). (7.3)

The corresponding conclusion is valid when � is taken as the slit box �m,β . Note in this
case that the ti are given in terms of connection probabilities in the slit box.

Proof We adapt the methods of [2]. Let I (respectively, E) be the region of � reachable
from � (respectively, �) along paths of � not intersecting D.

Let τ, τ ′ ∈ �� and α ∈ ��. We construct a coupling as follows, using the approach sum-
marised prior to the statement of the theorem. Let ω have law φ. Let ω = ωτ and ω′ = ωτ ′

have laws φτ
� and φτ ′

� , respectively, and be such that ω,ω′ ≤ ω. Furthermore, we construct
ω and ω′ in such a way that, if ω ∈ E2 = {D � �}, then ω, ω, and ω′ are identical on D ∪ I .

To the clusters of ω, ω, ω′ we assign spins in the usual manner, denoted σ , σ , σ ′, respec-
tively, such that: on the event E2, the functions σ , σ , σ ′ are equal on D ∪ I . For a reason
that will be clearer later, we shall not work with the pair σ , σ ′ of configurations but instead
with a pair ρ, ρ ′ defined as follows. First, we set

ρx = σx, ρ ′
x = σ ′

x for x ∈ D ∪ E.

On the event F = {ρD = ρ ′
D}, we sample from the measure φ� given F to obtain a (random)

configuration ζ ∈ �I , and we set

ρx = ρ ′
x = ζx for x ∈ I.

On the complement of F , we sample ρ (respectively, ρ ′) according to the conditional law
φτ

� given (ρx : x ∈ D ∪E) (respectively, φτ ′
� given (ρ ′

x : x ∈ D ∪E)). By the spatial Markov
property of the continuum Ising model alluded to after (5.4), ρ (respectively, ρ ′) has law φτ

�

(respectively, φτ ′
� ), and furthermore:

ρI = ρ ′
I on the event {ρD = ρ ′

D}, (7.4)
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and

κ(ρD = ρ ′
D) = κ(σD = σ ′

D) ≥ κ(E2) = 1 − t2
2 , (7.5)

where κ is the appropriate probability measure, and t2 is as in (7.3).
Let H be an event satisfying

H ⊆ {ρ� = ρ ′
�}. (7.6)

As in [2], if κ(H) > 0,

φτ
�(σ� = α)

φτ ′
� (σ� = α)

= κ(ρ� = α)

κ(ρ ′
� = α)

= κ(H ∩ {ρ� = α})
κ(H | ρ� = α)

· κ(H | ρ ′
� = α)

κ(H ∩ {ρ ′
� = α})

= κ(H | ρ ′
� = α)

κ(H | ρ� = α)
. (7.7)

It thus suffices, by an elementary argument, to prove that

κ(H | ρ� = α), κ(H | ρ ′
� = α) ≤ t (7.8)

where

t = t1 + 2t2 + t1 + t2

1 − t1 − 2t2
. (7.9)

To see this, assume (7.8) with t ≤ 1
2 . By (7.7),

1 − t ≤ φτ
�(σ� = α)

φτ ′
� (σ� = α)

≤ 1

1 − t
.

Now, 1/(1 − t) ≤ 1 + 2t since t ≤ 1
2 , and (7.2) follows.

There are four steps in proving (7.8). Let GD (respectively, G′
D) be the σ -field gener-

ated by ρD (respectively, ρ ′
D). Firstly, given that ω ∈ E1 = {� � D}, the spin-vector σD is

(conditionally) independent of σ�, whence
∣
∣κ(σD ∈ A | σ� = α) − κ(σD ∈ A | σ� = α′)

∣
∣≤ t1, A ∈ GD, α′ ∈ ��,

with t1 as in (7.3). Averaging over α′, we obtain
∣
∣κ(σD ∈ A | σ� = α) − κ(σD ∈ A)

∣
∣≤ t1,

and hence, by the equidistribution of σ and ρ,
∣
∣κ(ρD ∈ A | ρ� = α) − κ(ρD ∈ A)

∣
∣≤ t1, A ∈ GD. (7.10)

Secondly, let

g = κ(ρD �= ρ ′
D | GD), g′ = κ(ρD �= ρ ′

D | G′
D),

and, for a > 0, let H = Ha be given as

Ha = {ρD = ρ ′
D} ∩ {g ≤ a} ∩ {g′ ≤ a},
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where a will be chosen later. It is easily seen by (7.4) that Ha satisfies (7.6). By Markov’s
inequality and (7.5),

κ(g > a) ≤ 1

a
κ(g) ≤ 1

a
t2
2 ,

and therefore, since {g > a} ∈ GD ,

κ(g > a | ρ� = α) ≤ κ(g > a) + t1 by (7.10)

≤ 1

a
t2
2 + t1. (7.11)

By a similar argument,

κ(g′ > a | ρ ′
� = α) ≤ 1

a
t2
2 + t1. (7.12)

Thirdly,

κ(ρD �= ρ ′
D, g ≤ a | ρ� = α) ≤ ess sup

{
κ(ρD �= ρ ′

D | GD)1{g≤a}
}

= ess sup {g1{g≤a}} ≤ a, (7.13)

and similarly,

κ(ρD �= ρ ′
D, g′ ≤ a | ρ ′

� = α) ≤ a. (7.14)

Finally, by (7.4),

{ρD = ρ ′
D} ∩ {ρ� = α} = {ρD = ρ ′

D} ∩ {ρ ′
� = α} (7.15)

(this is where we use ρ, ρ ′ in place of σ , σ ′), and, by (7.12) and (7.14)–(7.15),

κ(ρD = ρ ′
D, g′ > a | ρ� = α) ≤ κ(g′ > a | ρD = ρ ′

D, ρ ′
� = α)

≤ κ(g′ > a | ρ ′
� = α)

κ(ρD = ρ ′
D | ρ ′

� = α)

≤ t1 + t2
2 /a

1 − a − t1 − t2
2 /a

. (7.16)

On combining (7.11), (7.13), (7.16), and setting a = t2, we obtain the first inequality of
(7.8) with H = Ha , and the second inequality holds similarly. �

Let � and � be disjoint finite subsets of � that are disjoint from ∂h�. Let D be a linear
subset of � that separates � and � ∪ ∂h�. Let α ∈ ��, β,β ′ ∈ �� , and η ∈ �∂h�. By (7.2)
applied to the sets � and � ∪ ∂h�,

∣
∣φ

β,η

� (σ� = α) − φ
β ′,η
� (σ� = α)

∣
∣≤ 2tφ

β ′,η
� (σ� = α), (7.17)

whenever t ≤ 1
2 where

t = t1 + 2t2 + t1 + t2

1 − t1 − 2t2
, (7.18)
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and

t1 = φ(� ↔ D), t2 =
√

φ(D ↔ � ∪ ∂h�). (7.19)

The suffix β,η in (7.17) indicates the composite boundary condition taking the values β on
� and η on ∂h�. We average (7.17) over β ′ to obtain

∣
∣φ

β,η

� (σ� = α) − φ
η

�(σ� = α)
∣
∣≤ 2tφ

η

�(σ� = α). (7.20)

Now,

φ
β,η

� (σ� = α) = φ
η

�(σ� = α, σ� = β)

φ
η

�(σ� = β)
.

Let A ∈ G�, B ∈ G� be events with strictly positive probabilities. We ‘multiply up’ in (7.20)
and sum over α ∈ A and β ∈ B to find that

∣
∣
∣
∣

φ
η

�(A ∩ B)

φ
η

�(A)φ
η

�(B)
− 1

∣
∣
∣
∣≤ 2t, η ∈ �∂h�, (7.21)

whenever t ≤ 1
2 . Upper bounds on t follow from the observation that φ is stochastically

dominated by the continuum percolation measure with parameters λ, δ (cf. (5.3)). Equation
(7.21) is a general statement of so-called ratio weak-mixing.

By the same argument without the reference to the boundary ∂h�,
∣
∣
∣
∣

φ�(A ∩ B)

φ�(A)φ�(B)
− 1

∣
∣
∣
∣≤ 2t, A ∈ G�, B ∈ G�, (7.22)

whenever t ≤ 1
2 , where t is in (7.18) with

t1 = φ(� ↔ D), t2 =
√

φ(D ↔ �), (7.23)

and D is a linear set that separates � and �.
The above ideas may be used to prove Lemmas 6.8 and 6.9, for the first of which we argue

as follows. Consider the box �m,β with slit SL. Let K be an integer satisfying 0 < K < 1
2L,

and let � = {x+ : x ∈ SL, K ≤ x ≤ L − K} and � = {x− : x ∈ SL, K ≤ x ≤ L − K}.

Lemma 7.24 Let λ, δ ∈ (0,∞). There exists C = C(λ, δ) ∈ (0,∞) such that, if β >

2m + L,
∣
∣
∣
∣

φm,β(σ� = ε+
K, σ� = ε−

K)

φm,β(σ� = ε+
K)φm,β(σ� = ε−

K)
− 1

∣
∣
∣
∣≤ Ce− 1

2 γK, ε+
K ∈ ��, ε−

K ∈ ��,

whenever the right side is less than or equal to 1. The function γ (λ, δ) may be taken as that
in Theorem 6.7.

The proofs are preceded by a type of ‘finite-energy’ inequality (see [2, 12]).

Lemma 7.25 Let S be a finite subset of �. For x ∈ � \ S, ε ∈ �S = {−1,+1}S , and α ∈
{−1,+1},

φ�(σS = ε, σx = α) ≥ 1

2
φ�(σS = ε)P�,λ,δ(x � S). (7.26)
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Proof Let x ∈ S, ε ∈ �S , and α ∈ {−1,+1}. Let E(ε) be the decreasing event containing all
ω ∈ �� such that: for all s, t ∈ S, s � t whenever εs �= εt . Recalling the manner in which
spins are associated with clusters,

φ�(σS = ε) = φ�(2−k(S)1E(ε)), ε ∈ �S, (7.27)

where k(S) is the number of clusters intersecting S. Similarly,

φ�(σS = ε, σx = α) ≥ φ�(2−k(S+)1E(ε)1x�S), (7.28)

where S+ = S ∪ {x}. Note that k(S+) = k(S) + 1 when x � S.
For any event A,

φ�(2−k(S+)1A) = φ�(2−k(S+))φ̂(A) = Kφ̂(A), (7.29)

where K = φ�(2−k(S+)) and φ̂ is the continuum random-cluster measure on � with a wired
boundary condition on S+, that is, all clusters intersecting S+ are counted as one. By (7.29)
and the FKG inequality applied to φ̂,

φ�(2−k(S+)1E(ε)1x�S) = Kφ̂(E(ε) ∩ {x � S})
≥ Kφ̂(E(ε))φ̂(x � S)

= φ�(2−k(S+)1E(ε))φ̂(x � S).

Now k(S) ≤ k(S+) ≤ k(S) + 1, so that, by (7.27)–(7.28),

φ�(σS = ε, σx = α) ≥ 1

2
φ�(σS = ε)φ̂(x � S)

and the claim follows by the stochastic inequality (5.3). �

Proof of Lemma 7.24 Take D = {(x,0) : x ∈ [−m,0) ∪ (L,L + m]}, the union of the two
horizontal line-segments that, when taken with the slit SL, complete the ‘equator’ of �m,β .
Thus, D is a linear subset of �m,β separating � and �. Since φ ≤st P�,λ,δ , by Theorem 6.7
there exist constants C, C ′ depending on λ and δ alone, such that

t1 = φ(� ↔ D) ≤ 2
�L/2�∑

i=K

Ce−γ i ≤ C ′e−γK,

and furthermore t2
2 = t1. The claim now follows by (7.22). �

Proof of Lemma 6.8 Let γ be given as in Theorem 6.7. With K = �lnL�, let σ±
L,K = (σ±

x :
K ≤ x ≤ L−K). We may apply Lemma 7.25 as follows in order to compare the laws of the
spin-vector σ±

L and that of the reduced vector σ±
L,K . First, let x = (L,0), and let ε+, ε− ∈

{−1,+1}L+1 be possible spin-vectors of the sets S+
L and S−

L , respectively. By Lemma 7.25
with S = S+

L ∪ S−
L \ {x+},

φm,β(σ+
L = ε+, σ−

L = ε−)

≥ 1

2
φm,β(σ+

y = ε+
y for y ∈ S+

L \ {x+}, σ−
L = ε−)P�m,β ,λ,δ(x

+
� S).
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Now, P�m,β ,λ,δ(x � S) is at least as large as the probability that the first event (death or
bridge) encountered on moving northwards from x is a death. That is,

P�m,β ,λ,δ(x � S) ≥ δ

2λ + δ
.

On iterating the above argument, we obtain that

φm,β(σ+
L = ε+, σ−

L = ε−) ≥
(

δ

2(2λ + δ)

)4K

φm,β(σ+
L,K = ε+

K, σ−
L,K = ε−

K), (7.30)

where ε±
K is the vector obtained from ε± by removing the entries labelled by vertices x

satisfying 0 ≤ x < K and L−K < x ≤ L. In summary, there exist C,α ∈ (0,∞) depending
on λ, δ such that, for ε± ∈ �L,

CL−2αφm,β(σ+
L,K = ε+

K, σ−
L,K = ε−

K) ≤ φm,β(σ+
L = ε+, σ−

L = ε−)

≤ φm,β(σ+
L,K = ε+

K, σ−
L,K = ε−

K).

Set � = {x+ : x ∈ SL, K ≤ x ≤ L − K}, � = {x− : x ∈ SL, K ≤ x ≤ L − K}, and apply
Lemma 7.24 to obtain that there exists C = C(λ, δ) < ∞ such that

∣
∣
∣
∣
∣

φm,β(σ+
L,K = ε+

K, σ−
L,K = ε−

K)

φm,β(σ+
L,K = ε+

K)φm,β(σ−
L,K = ε−

K)
− 1

∣
∣
∣
∣
∣
≤ Ce− 1

2 γK ≤ CL− 1
2 γ ,

whenever (say) the right side is less than or equal to 1
2 , say for L ≥ L0(λ, δ).

By Lemma 7.25 again, for suitable C ′, α,

C ′L−αφm,β(σ±
L,K = ε±

K) ≤ φm,β(σ±
L = ε±) ≤ φm,β(σ±

L,K = ε±
K).

The claim now follows for L ≥ L0, with suitable values of C1, C2, α. We may adjust the
constants to obtain the required inequality for all L ≥ 0. �

Proof of Lemma 6.9 Let � = S+
L ∪ S−

L and � = ∂h�m,β . Let k = 3
7m and assume for sim-

plicity that k is an integer. (If either m is small or k is non-integral, the constant C may
be adjusted accordingly.) Let D be the circuit illustrated in Fig. 4, comprising a path in the
upper half-plane from (−k,0) to (L + k,0) together with its reflection in the x-axis.

By Theorem 7.1,

∣
∣
∣
∣
∣

φα
m,β((σ+

L ,σ−
L ) = (ε+, ε−))

φm,β((σ+
L ,σ−

L ) = (ε+, ε−))
− 1

∣
∣
∣
∣
∣
≤ 2t, α = η, τ, ε± ∈ �L,

whenever t ≤ 1
2 , with t as in (7.18). We ‘multiply up’ and sum over (ε+, ε−) ∈ A to obtain

∣
∣
∣
∣
φα

m,β(σ� ∈ A)

φm,β(σ� ∈ A)
− 1

∣
∣
∣
∣≤ 2t, (7.31)

whenever t ≤ 1
2 .
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Fig. 4 The circuit D is
approximately a parallelogram
with � at its centre. The sides
comprise vertical steps of height
2 followed by horizontal steps of
length 1. The horizontal and
vertical diagonals have lengths
2k + L and (order) 4k + 2L

respectively, where k = 3
7 m

By (5.3), φ ≤st P�,λ,δ . Let β ≥ 4(m + L + 1). It is a straightforward consequence of
Theorem 6.7 that there exist C,C ′, c′ > 0, depending on λ, δ only, such that

t1 ≤ 4
�L/2�∑

i=0

Pλ,δ((i,0) ↔ D) ≤ 4
�L/2�∑

i=0

Ce−γ 2
3 (k+i) ≤ C ′e− 2

7 γm, (7.32)

and similarly,

t2
2 ≤ 8

�k+L/2�∑

i=0

Ce−γ ( 4
7 m+c′i) ≤ C ′e− 4

7 γm, (7.33)

with γ given as in Theorem 6.7. The claim of the lemma follows. �

8 Disordered Interactions

We have so far assumed that the spin-couplings λx,x+1 and the field-strengths δx appearing
in the Hamiltonian (1.2) are constant. The situation is more complicated if: either the envi-
ronment of couplings and strengths vary about the space Z, or they are random (in which
case the model is said to be disordered). The arguments of this paper may be applied in each
case, and the outcomes are summarised in this section.

Suppose first that the λx,x+1 and δx are non-constant. The fundamental bound of Theo-
rem 6.5 depends only on the ratio θ = λ/δ, and the connection probabilities of the contin-
uum random-cluster model are increasing in the λx,x+1 and decreasing in the δx . One may
therefore check that the conclusions of the paper are valid with γ = γ (λ, δ) whenever

λx,y/δx ≤ λ/δ, y = x − 1, x + 1, x ∈ Z. (8.1)
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Hence, in the disordered case where (8.1) holds with probability one, the corresponding
conclusion is valid.

We turn to the situation in which (8.1) does not hold with probability one. Suppose that
the λx,x+1, x ∈ Z, are independent, identically distributed random variables, and similarly
the δz, z ∈ Z, and assume that the λx,y are independent of the δz. We write P for the cor-
responding probability measure, viewed as the measure governing the ‘random environ-
ment’, and �, � for a typical spin-correlation and field-strength, respectively. Conditional
on λ = (λx,x+1 : x ∈ Z) and δ = (δz : z ∈ Z), we write Pλ,δ for the probability measure of
the associated continuum percolation process. In applying the methods of this paper within
the random environment, one needs to deal with sub-domains of Z where the environment
is not propitious for the bound of Theorem 6.5. As before, we perform a comparison of the
continuum random-cluster model and continuum percolation in a random environment, and
we shall appeal to the following theorem of [17] (see also Theorem 1.6 of [1]).

For (x, s), (y, t) ∈ Z × R and q ≥ 1, let

dq(x, s;y, t) = max
{|x − y|, (ln+ |s − t |)q

}
,

where ln+ x = max{lnx,0}.

Theorem 8.2 ([17]) Consider continuum percolation on Z × R in a random environment
satisfying

� = max
{
P
([ln(1 + �)]β),P ([ln(1 + �−1)]β)}< ∞,

for some

β > 5 + 7

2

√
2. (8.3)

There exists Q = Q(β) > 1 such that the following holds. For q ∈ [1,Q) and γ > 0, there
exists ε = ε(β,�,γ, q) > 0 and η = η(β, q) > 1 such that: if

P
([

ln(1 + (�/�))
]β
)

< ε, (8.4)

there exist identically distributed, positive random variables Dx ∈ Lη(P ), x ∈ Z, such that

Pλ,δ

(
(x, s) ↔ (y, t)

)≤ exp
[−γ dq(x, s;y, t)

]
if dq(x, s;y, t) ≥ Dx, (8.5)

for (x, s), (y, t) ∈ Z × R.

The lower bound (8.3) for β is enough to imply that P (Dη
x) < ∞ for some η > 1. The

larger β , the larger η may be taken.
For the remainder of this section we assume that the conditions of the above theorem are

valid, and we shall work with the conclusion (8.5), with q = 1, γ > 1, and the Dx given
accordingly. We let L ≥ 8 and K = �lnL�, and consider the event

AL =
L−K⋂

x=K

{
Dx < min{x,L − x}},

noting that

P (AL) ≥ 1 − 2
∞∑

x=K

P (D ≥ x),
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where D has the distribution of the Dx . Since P (D) < ∞,

P (AL) → 1 as L → ∞. (8.6)

An estimate for the rate of convergence may be obtained (here and later) by the fact that
P (Dη) < ∞ for some η > 1.

We comment next on the adaptation of our earlier results to the disordered setting.
Theorem 7.1 holds within the random environment, without change. The conclusion of
Lemma 7.24 is valid with K = �lnL� whenever the event AL occurs. Lemma 7.25 holds
unconditionally. The conclusion of Lemma 6.8 holds on AL with the lower bound C1L

−α

replaced by CXL and the upper bound C2L
α replaced by (CXL)−1, with C a constant and

XL =
∏

x∈�

δx

δx + λx,x−1 + λx,x+1
,

where, in the notation of the proof of Lemma 6.8, � = (S+
L \ �) ∪ (S−

L \ �). Now,

lnXL = −2
K−1∑

x=0

Zx − 2
L∑

x=L−K+1

Zx (8.7)

where

Zx = ln

(

1 + λx,x−1 + λx,x+1

δx

)

.

The two summations in (8.7) are independent of one another, and each is the sum of a 1-
dependent sequence of random variables. Also,

Zx ≤ ln

(

1 + λx,x−1

δx

)

+ ln

(

1 + λx,x+1

δx

)

,

so that, by (8.4) and the Minkowski inequality,

√
P (Z2

x) ≤ 2

√

P
([

ln(1 + (�/�))
]2
)

< ∞.

By the central limit theorem for 1-dependent sequences (see, for example, Theorem 19.2.1
of [15]),

P (B
ρ

L) → 1 as L → ∞, (8.8)

where B
ρ

L = {XL ≥ L−ρ} and ρ ∈ (0,∞) satisfies

ρ > 4P (Z0). (8.9)

Some changes are necessary to the proof of Lemma 6.9, reflecting the fact that the decay
in (8.5) is sub-exponential in time. The circuit illustrated in Fig. 4 is generated by translation,
discretisation, and reflection of the Cartesian line y = 2x. In the disordered setting, we work
instead with the curve y = ex , and we assume β > 5em+ 1

2 L. We define two further events
that depend on the environment. Assume for simplicity that m is even, write k = 1

2m, and let

CL,m =
L⋂

x=0

{

Dx <
1

2
min{k + x,L + k − x}

}

,
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DL,m =
L+k⋂

x=−k

{
Dx < min{m + x,L + m − x}}.

In the current setting, (7.32) becomes

t1 ≤ C1e
− 1

4 γm on the event CL,m,

for some constant C1 depending on γ . Similarly, (7.33) is replaced by

t2
2 ≤ C2e

− 1
2 γm on the event DL,m.

An amended version of Lemma 6.9 thus holds, so long as the event CL,m ∩ DL,m occurs.
We estimate P (CL,m ∩ DL,m) as follows. First, since P (D) < ∞,

P (CL,m) ≥ 1 − 2

� 1
2 L�∑

x=0

P

(

Dx ≥ 1

2
(k + x)

)

→ 1 as m → ∞. (8.10)

Similarly,

P (DL,m) ≥ 1 − 2

� 1
2 L�∑

x=−k

P (Dx ≥ m + x) → 1 as m → ∞. (8.11)

Suppose that AL ∩ B
ρ

L ∩ CL,m ∩ DL,m occurs for some ρ satisfying (8.9). The principal
estimate (2.3) follows with CLα replaced by CLρ as above. On the above event, the proof
of Theorem 2.8 may be followed to obtain the logarithmic decay of entanglement. Note
from (8.6) and (8.8) that P (AL ∩ B

ρ

L) → 1 as L → ∞, and by (8.10)–(8.11) that P (CL,m ∩
DL,m) → 1 as m → ∞.

Proof of Theorem 8.2 This is essentially Theorem 1.1 of [17] with d = 1, subject to two
differences: the right side of (8.5) is expressed differently in [17], and the condition on β

is different. The present statement is obtained as follows from the proof of [17], using the
notation of that proof. With β satisfying (8.3) and α = 1+√

2, we pick p > 2α and ν = q−1

satisfying (3.3) of [17]. (The condition on β is slightly stronger than that of [17].) Let Kx

denote the minimal k1 in the second paragraph of the proof of Theorem 3.3 of [17]. As there,

P (Kx > r) ≤ c

L
p−α
r

, r ≥ 1,

where c is a constant, and (Lr : r ≥ 1) is a sequence of positive reals given by Lr = Lαr
for

some large L. Let Dx = bLKx . Inequality (8.5) holds by the argument of [17]. Furthermore,
for η > 1, P (Dη

x ) has the same order as

bη

∞∑

a=0

aη−1P (LKx > a) ≤ bη

∞∑

r=0

Lηαr+1 · c

L(p−α)αr , (8.12)

which may be made finite whenever η − 1 is small and positive, and p is chosen suitably. �
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